

NMR Basic training Part-l 2018

- NMR Spectrometer
 - Description
 - Lock, shimming
- NMR Sensitivity
- Security: Magnetic Field cautions
- Rules
- Samples
 - Sample preparation
 - NMR tube

[©]NMR Spectrometer, Block Diagram

Magnetic field

Resolution

Dispersion

60MHz (≈1965) Sensibility

1.000 MHz *(2009)*

Higher the field strength — higher the sensitivity and spectral dispersion

liquid helium temperature (4K \approx -269 °C), liquid N₂ (75K \approx -198 °C)

Superconducting Magnet

Magnet

Shielded Magnets

Blue Main Coil Red Coils to Shielded

coil outside of the main coil which cancel out much of the fringe field

©Bruker

New Coils to minimize the stray field

- •Excellent homogeneity and stability of Magnetic field
- •External field perturbations are efficiently attenuated
- Low external residual magnetic field
- Minimize laboratory space requirements

Shielded Magnets in NMR Facility

- 3 Mercury-400 MHz NMR
- 1 VNMRS-500 MHz
- 1 Bruker Avance III 600 MHz
- 1 Bruker Avance III 400 MHz

The Stray field in the NMR spectrometers

NMR magnetic field: Tesla or specifying the ¹H Larmor frequency for the magnet.

The 5 gauss Level

Field (Teslas)	¹ H frecuency (MHz)	Radial Distance	Axial Distance
18.8	800	6.3 m	8.0 m
14.08	600	3.6 m	4.0 m
14.08	600	0.7m	1.4 m 🔶
11.74	500	2.8 m	3.6 m
11.74	500	0.8m	1.25 m
9.39	400	0,9 m	1,5 m 🚽

Tuning the probe to optimize:

- ➢RF pulses
- >Detecting NMR signal

The probe can be affected by:

Quality NMR tube

product outer the tube

Dirty tubes

¹H NMR Spectra of an Empty 5 mm Tube in an NMR Probe Before and After the Probe Was Cleaned

After Probe Cleaning
Before Probe Cleaning

Probe repair≈10.000 \$ (3 months)

Probe

New probe ≈ 60.000 \$

NMR magnetic field slowly drifts with time

The field drift can be affect to the NMR Signals

DNMR probes contains an additional transmitter coil tuned to deuterium frequency

□Need to constantly correct for the field drift during data collection

Deuterium NMR resonance of the solvent is continuously irradiated and monitored to maintain an on-resonance condition

Homogeneity in the magnetic field

If the magnetic field is heterogeneous across the sample

broader NMR signals

The same proton experience different B_0 magnetic field

If the magnetic field is the same throughout the volume of active probe

narrow NMR signals

Poor Homogeneity \rightarrow multiple peaks at different effective B_o

Resonance depends on <u>position</u> in NMR sample

Good Homogeneity \rightarrow single peak with frequency dependent on B_o

Adjust the homogenity : Shim Coils

The electric currents in the shim coils create small magnetic fields which compensate the inhomogeneity's in the magnet The coils have different geometric orientation and function

Z1, Z2, Z3, Z4, Z5, Z6, Z7

X, XZ, XZ2, X2Y2, XY, Y, YZ, YZ2, XZ3, X2Y2Z, YZ3, XYZ, X3, Y3

Optimize shims by:

- minimizing line-width
- maximizing lock signal or maximizing FID

Line widths near of IHz

Magnetic forces

Metal objects must remain outside the 5-gauss perimeter. The greater the mass of the object, the more strongly it is attracted by the magnet.

The shorter the distance to the magnet, the stronger the force.

CAMPS MAGNÈTICS MOLT INTENSOS

És prohibida l'entrada en aquesta sala de persones que portin estimuladors cardíacs o pròtesis metàl.liques

CAMPOS MAGNETICOS MUY INTENSOS

Se prohibe la entrada a esta sala de personas con marcapasos o prótesis metálicas

RESTRICTED ACCES AREA

Only allowed to:

- Users of Unitat d'RMN
- Unitat d'RMN authorised personnel

Forbidden access to people with
cardiac pacemaker or metallic
prosthesis
Forbidden access with iron or
magnetic objects; strong attractive
magnetic fields surrounding the magnet
are present

Keep analogical clocks and all kind of magnetic objects (credit cards, diskettes, transport cards, etc) out of the 5 G line, otherwise they can get useless

Quench: is the sudden loss of supercondutivity in the magnet's main coil that produces a rapid evaporation helium liquid to gas

Don´t

Hit or moving the magnet
Manipulating security ports
Incorrect transferring cryogenic liquids.

In the event of a "magnet quench:

•Leave the room immediately

•Do not re-enter in the room until the oxygen level has returned to normal

•Activate the ventilation system

- Refill criogenic liq
 - N2 y He liq
- Checking the NMR performance
- Calibrations
- Preventive Maintenance
- Updates and improvements

Resolution in the Criogenic's Refill

- Report any incidence: Notify the staff immediately if a sample is broken inside or around the magnet.
 - To record incidents in the books of the NMR Spectrometer
- Handle the spinners with care (are very expensive)
- Do not exceed the boiling or freezing points of your solvent sample.
- Be very careful with sample tubes as they are fragile and break easily.
- Follow all safety recommendations
- Should avoid all unauthorized access

What Does it Cost?

- Hourly Rates: Approved annually by the UB
 - Are available on the website of the UB <u>http://www.ub.edu/finances/tarifes/tarifes.htm</u> and are summarized in the NMR web
- The cost is based on the usage time and / or reserve time
- Cover only part of the operation of NMR spectrometer
 - Manual: two rates day / night
 - Auto : a single rate
- Three different rates
 - UB Grup
 - Academic Users others Universities
 - Industry

Included in base price: standards NMR solvents, plotting of spectrum

- Adjust the sample concentration to the solubility
 Avoid product precipitation
- Use a single deuterated solvent
 Reference for lock
- Avoid heterogeneous samples.
 - Avoid air bubbles, suspended particles, sample separation
- The low quality NMR tubes → distorts magnetic field homogeneity
 - Breaks easily \rightarrow damage the NMR probe
- Adjust the Properly position NMR sample in the magnet with the NMR gauge

NMR Sample Preparation

For IH Use about 5-25 mg of product

I-0.75 ml deuterated solvent

The sample should be about 4.5-5.5 cm of liquid

> The sample must be free of suspended material: You can filtering using a cotton wool

VO

label your sample

Effects due to incorrect sample preparation

An insufficient volume or the presence of precipitate in the solution leads to a distortion of magnetic field lines. The result is a change in the line shape in the signals of the spectrum or a peak splitting

Overfilling the NMR tubes may cause problems due to temperature gradients in the sample

Before placing the sample in the autosampler

Check

- •The NMR tube is clean? (use isopropanol and *kimwipe*)
- The sample is homogeneous?
- •The NMR tube is tightly closed?
- •The spinner is Ok?
- •Are you adjust the position NMR sample with the NMR gauge?

The quality of the spectra is not enough?

Failure due to sample preparation

- Dilute samples do not benefit from a short liquid length.
 The sample should be about 4.5-5.5 cm of liquid
- The height of the NMR-tube in the spinner is not correct
- Contaminations affecting spectral quality. You should: avoid:
 - Paramagnetic Substances
 - High salt concentration
 - Particles "fishes" and not dissolved compounds
 - Mixes of deuterated solvents

The time required for shimming increases significantly and may be impossible to obtain a quality spectra

At the autosampler

- Cautions about the autosampler
 - Put the spinner <u>with tube into</u> the SMS changer at the position marked on the monitor screen (check also del logbook).
 - Never put any spinner-tube in the same assigned position to the sample which is into the magnet
 - Do not put the spinner (or anything else) under the robot fingers!
 - Never put an empty spinner in the autosampler
 - The robot arm may move quickly and unexpectedly– watch out when samples are being changed.
 - Do not remove spinners from the lab or move them between the spectrometers.

Placed at PCB, Chemistry and Pharmacy

NMR Sample Tube Care of tube and cleaning

• Do not heat the NMR tube in an oven, the tube will warp and may cause probe damage. The bent tubes may cause severe probe damage.

Clean the NMR tube with a suitable solvent and dry with acetone and then nitrogen or air

then nitrogen or air

- Tube caps are very cheap and disposable, dirty caps or old caps can contaminate your sample
- Use only EIGHT-INCH tubes on the SMS sample changer!
- The price of NMR tubes range from <2-3€ a piece to >50€. For high-

quality NOE-based spectra at higher fields use high-quality tubes

Recommended for 400-500 MHz: Wilmad ref PP 507 or PP 528 (7-14 \$) Length: 8 inches

http://www.wilmad-labglass.com/services/technical_NMR_EPR.jsp http://www.cortecnet.com http://www.newera-spectro.com/ http://www.nmrtubes.com/shop-online.php?c=nmrtubes

NMR Training part II

Operating Modes

9 samples

600

50 Samples (3) or 9 samples (1)

- Autosampler
- Preset conditions
- Easy and flexible use
- Operation in continuous mode
 - •24h a day every day of the year

600

Operative system

• Two systems: the same way VNMR 6.1C (old System G300)

VNMRJ (2.2 C/D) (M400)

•The experiments and basic parameters are the same

•But some differences in the graphic display

Which Instrument Can I Use ?

- VNMRS-400 (Fac Pharmacy)
 - Autosampler 9 Samples
 - Experiments: IH, I3C, I9F, 3IP y exp 2D
- Mercury 400 (Fac Pharmacy)
 - Autosampler SMS <u>50 Samples</u>
 - Experiments: IH, I3C, I9F y exp 2D
- Mercury 400 (PCB)
 - Autosampler SMS 50 Samples
 - Experiments: I H, I 3C, I 9F y exp 2D
- Mercury 400 (Fac Chemistry)
 - Autosampler SMS <u>50 Samples</u>
 - Experiments: IH, I3C, I9F y exp 2D

D B400 MHz NMR Fac. Chemistry Not access in self-service but it can work (e.g. 31P-NMR) programmed by NMR facilities 500 MHz NMR spectrometers PCB

Detection & Sensitivity

Signal-to-noise of an NMR measurement depends:

$$\frac{S}{N} \propto NAT_{s}^{-1}B_{0}^{3/2}\gamma^{5/2}T_{2}^{*}(NS)^{1/2}$$

$$\gamma^{1}H = 26,753 \text{ rad/G}$$
Ratio $(\gamma^{1}H/\gamma^{13}C)^{3} \approx 64$

$$\gamma^{13}C = 6,728 \text{ rad/G}$$

If we consider the term A (Natural abundance) ${}^{1}H \approx 100\%$; ${}^{13}C \approx 1\%$

¹H is 6400 times more sensible than 13C

 γ ¹⁵N -2,71rad/G, A \approx 0,27% ¹H is \approx 27*10⁵ times more sensible than ¹⁵N

Alternatives to Increase SN

1-Increase the concentration in the active volume.

2- Increase the Magnetic Field (e.g. 500 MHz or B400 MHz cryoprobe)

at the

600

Which spectrometer Can I use for ¹³C?

Basic Capabilities in Automatic Systems

- Instrument Capabilities
 - 4 x 400 MHz spectrometers shielded magnet , Gradient in Z
 - 2 x ATB probe (IH/I9F/I3C) Mercury 400 (PCB / Chemistry),

1 x Optimized for 1H/19F y 13C high tolerance salt and solvent changes (Pharmacy)

1 x IH/19F/13C/31P probe VNMRS400 (Pharmacy)

Núcleo	VNMR500	Mercury-400	B400Q
1H	730:1	<mark>220:1</mark>	<mark>1050:1</mark>
13C	240:1	<mark>158:1</mark>	<mark>450:1</mark>
31P	135:1	<mark>183:1</mark>	<mark>350:1</mark>
19F	650:1	<mark>175:1</mark>	-

Some useful information shoud be required before programming the NMR experiments

- Chemical characteristics of the compound
 - Molecular weight
 - Functional groups
 - Symmetry
- Solubility in mg/ml ?
- The product contains a transition metal ? (e.g. organometallic compound such as Pt, Pd)
- Is a mixture or a single compound ?
- The spectrum is needed for
 - Check the reaction ??
 - Identification ??
 - Structure determination ?
 - Quantitative ??

When you know this answers then select the spectrometer, experiment and parameters

600

Data acquisition parameters: "the key"

• **2D**.NMR sequence (NOESY)

Automatic System: User Interface

User Identification (group, e-mail, name)

¿What experiment I can do it now?

Scheduled Activity

- * 8-15 minutes (e.g. 1H, 19F, 31P)
- If More than 15 min it must be programmed in the
- night way (e.g. ¹³C, NOESY, HSQC, etc.)
- unlimited time experiment (only in the weekend)

Automation Interface Appearance

information about the current acquisition

Write sample's name and choose solvent. The name will be the same for all experiments from this sample

Second step: select your experiment

600

- Select DayQ or
- **Click the buttons fo** experiments (PROTO
- **Customizing each E** selected

View: Submit Qu Add Next Selection to

New Study Submit Hide Tray Clear Pending

Study Queue enew Sample SampleInfo [Day:

•

	Vnmrj	
	ls <u>H</u> elp QUIT SESSION	
O or NigthO		
ons for the desired		Sample#: 26 (1 study)
PROTON, CARBON)	7 8 9 10 11 12 13	Operator: robot400 Samplename: PMG-237ac Solvent: d2o
<mark>ach Experiments</mark> you	14 15 16 17 18 19	Page: Date: Sep 26, 2011 14:27:54 Status: Complete
	20 21 22 23 24 25 26	
	27 28 29 30 31 32	
reShift 1D	46 47 48 49 50	
ueue V Sample Start Acquir Start Acquir Start Acquir COTON_001_day[0:24] RBON_001_day[8:40]	re Process	
PT_001_day [3:04] JORINE_001_day [0:26] DSY_001_day [3:12]	1D PROTON PRESAT wet1D	Submit next selection to:
Hon	CARBON DEPT FLUORINE gCOSY gDQCOSY TOCSY NOESY ROESY	PrepTime (3 min, 0 sec) EXPLIST: PROTON_001 (24 sec) CARBON_001 (8 min, 40 sec)
Submit Queue Hete	ero2D gHSQCAD gHMBCAD	DEPT_001 (3 min, 4 sec) FLUORINE_001 (26 sec) gCOSY_001 (3 min, 12 sec)
t Selection to: DayQ NightQ Study Study Tray Edit Study from Location		Proc/Plot (10 min, 0 sec) TOTAL (25 min, 46 sec)
Clear Pending Exp from Queue		
Temp 25.0 CSpin 19 HzLock 87.7Sample 26ProbeATB	Idle	

Third step customize each experiment

for example, modifying a PROTON acquisition parameters

¹³C Customizing parameters

WE COULD CONTINUE PROGRAMMING MORE EXPERIMENT BUT MAYBE IS TIME TO SUMMIT AND LOGOUT

1

600

The DEPT requires a previous ${}^{13}C$ \longrightarrow Adds ${}^{13}C$ if not scheduled

Start Acquire I Defaults	Process Show Time Save Quit-nosave Default	Acquire Sequence Arrays	
ProcPlotAdv Acquisition Pulse Sequence Channels Flags Future Actions Overview	Experiment: DEPT Solvent: cdcl3 Observe: C Acquisition Options Spectral Width (select): ppm (or enter): 10.1 to: 200.1 ppm Number of scans: 32 Relaxation Delay: 1 sec XH Multiplicity editing: XH/XH3 up & XH2 down PLUS X Quaternary Carbons Suppress Quat. 13C relax delay. 	13 Decoupler: H1 Receiver Gain (dB): 30 Autogain:	DEPT

Scans must be 1/9 or 1/10 of scans required for your carbon spectrum but min 32

The HSQC/gHSQC experiment replace the 1D DEPT for routine analysis

gCOSY IH-IH correlation experiment

The 2D experiments need 1H spectrum before

If not exist in the study Proton was automatically added for gCosy

<u>File Edit View Acquisition Automation Process Display Tools Help</u> QUIT SESSION... 2 🔲 🗟 🚫 🔘 × 🔘 ال 🐠 6 Holding Frame ProcessPlot -Exp:1 Index: td1D (HC)HetToxys Jn(CH)corr I1(CH)corr (H)Sel1D Common Studies (HH)Homo2D CARBON PROTON 1.0 500.0 5.0e-5 astab (H) T1-Measure (H) T2-Measure (C) APT (C) DEPT FLUORINE PHOSPHORUS PureShift 1D ⊢new Sample SampleInfo (Day 2:24 Night:20:56) Start Acquire Process Show Time Default Sequence Arrays PROTON_001_day [0:24] CARBON_001_night [8:40] Experiment: gCOSY Solvent: cdcl3 H1-H1 Correlation [Decoupler: C13] DEPT_001_night [3:04] ProcPlotAdv qCOSY_001_night [3:12 Acquisition Acquisition Options Receiver Gain (dB): Pulse Sequence Before gCOSY acq: 🗌 Re-shim SolvSupp Channels After gCOSY acq: Scans per t1 Increment Autoplot Flags t1 Increments 128 Starting with Future Actions wet1D PRESAT PROTON Overview Samplename: Autoprocessing: mentol View: Submit Queue Symmetrize along diagonal after transform start of Q lock/shim? yes / yes Add Next Selection to: DayQ 🖲 NightQ More Options: PlotProcAdv page Priority sample Suhmi to Automation Show Tray Clear Pending Exp from Queue Lock Sample Probe Temp Spin 🔳 📕 Parameter pwxlv180r reset to maximum of 63

Idle

time ≈ 11 min

Very easy to run :

Only *nt* and *ni* need to be adjusted

Solvent suppression can be incorporated PRESAT or wet (selected signals in the ID exp)

gCOSY (nt=2 ni=256)

ATB

600

(h)

600

gHSQC

Most important parameter

One Bond J_{xH} aprox 146Hz

The average value of the one bond coupling constant can be optimized if necessary (C=C, furane, etc)

Phase sensitive Apodization function: Gaussian or sq-sinebell Linear prediction in F1 ni*2- 4

Cross peaks in gHSQC are multiplicity edited by default: CH and CH3 are + and CH2 are so you get the equivalent information of a DEPT

Time ≈ 20- 60 minutes

Most important parameter

Mixing time (mix=70-120 ms)

Correlates a proton to all other protons in a spin system.

Peptides, oligosaccharides

Useful for resolving ambiguities in the COSY

Phase sensitive; Apodization funtion: gaussian Linear prediction in FI ni*2- 4

TOCSY (nt=2 ni=256) time ≈ 46 min

600

600

Most important parameter

Mixing time (mix=100-800 ms)

NOESY (**nt=16 ni=256** mix=0.5) time ≈ 4h

Diagonal peaks are negative, positive cross peaks are positive NOEs, negative cross peaks are negative NOEs or chemical exchange correlations.

Phase sensitive; Apodization function: Gaussian Linear prediction in FI ni*2- 4

600

gHMBC

Most important parameter

2-3 Bond Jn_{xH}≈3-8 Hz

The average value of the 2,3 bond coupling constant can be optimized.

Can't discriminate between correlations due to 2 bonds and those due to 3 bonds

gHMBCAD: Phase sensitive in FI and AV in F2 Apodization function: sq-sinebell in F1 and sq-cosine in F2

gHMBC experiment AV

Apodization function sinebell in FI and F2 Linear prediction in FI ni*2- 4

Info web

(the

600

Time experiment guidelines Quinine sample (5mg in 0.8 ml CDCL₃)

	nt	ni	Parameters to adjust	Time at 400 MHz
1H 1D	16			2 min
1D 13C	4000-7000			3h -4h
gCOSY	1	256		7 min
TOCSY	2	200	Mixing time 30 - 120 ms	25 min
NOESY	16	256	mix = 0.1 s to 0.3 s for large molecules mix = 0.4 s to 0.8s for small molecules	3h -4h
gHSQC	4	128	J=140	26 min
gHMBC	16-8	400	J=8	1-2h 20min

More frequent user failures

• Inappropriate characters in the text.

numbers, special characters (*\$/&%!)

- Place the tub in a same position that sample in the magnet. The Acqstat or notebook was not check.
- Small tubes with a length less than 19 cm.

The tube can be broken.

Mislabeled samples.

Incorrect label Labeled on the bottom of the tube.

• Precipitate.

The solution was collapsed by the solid.

• Shut down computer.

Log out or close the program.

din.

600

More frequent spectrometer failures

Spining sample

Tube/spinner/failure in air supply

Dont found the Lock

Concentration/ product precipitation / Poor Homogeneity

Receiver Overflow

very high concentration of sample

Splitted or broad peaks

Concentration/ product precipitation / Poor Homogeneity

600

WHAT KIND OF INFORMATION GIVE US THE EXPERIMENTS ?

NOESY QUININE

