

Nuclear properties	Nuclide	Spin I	Electric quadrupole moment ^{a)} [eQ] [10 ⁻²⁸ m ²]	Natural abundance) [%]	Relative sensitivity ^{b)}	Gyromagnetic ratio y ^{a)} [107 rad T ⁻¹ s ⁻¹]	NMR frequency [MHz] ^{b)} $(B_0 = 2.3488 \text{ T})$
	¹ H	1/2	-	99.985	1.00	26.7519	100.0
	^{2}H	1	2.87 x 10 ⁻³	0.015	9.65 x 10 ³	4.1066	15.351
	³ H ^{e)}	1/2	-	-	1.21	28.5350	106.664
	6Li	1	-6.4 x 10 ⁻⁴	7.42	8.5 x 10 ⁻³	3.9371	14.716
	10B	3	8.5 x 10 ⁻²	19.58	1.99 x 10 ⁻²	2.8747	10.746
	^{11}B	3/2	4.1 x 10 ⁻²	80.42	0.17	8.5847	32.084
N	¹² C	0	-	98.9	-	-	-
	13C	1/2	-	1.108	1.59 x 10 ⁻²	6.7283	25.144
	14N	1	1.67 x 10 ⁻²	99.63	1.01 x 10 ⁻³	1.9338	7.224
	^{15}N	1/2	-	0.37	1.04 x 10 ⁻³	-2.7126	10.133
	¹⁶ O	0	-	99.96	-	-	-
	17O	5/2	-2.6 x 10 ⁻²	0.037	2.91 x 10 ⁻²	-3.6280	13.557
	¹⁹ F	1/2	-	100	0.83	25.1815	94.077
	²³ Na	3/2	0.1	100	9.25 x 10 ⁻²	7.0704	26.451
	²⁵ Mg	5/2	0.22	10.13	2.67 x 10 ⁻³	-1.6389	6.1195
	29Si	1/2	-	4.70	7.84 x 10 ⁻³	-5.3190	19.865
	31P	1/2	-	100	6.63 x 10 ⁻²	10.8394	40.481
	37K	3/2	5.5 x 10	93.1	5.08 x 10 ⁻⁴	1.2499	4.667
	⁴⁵ Ca	112	-5.0 x 10	0.145	6.40 x 10 ⁻⁵	-1.8028	6.728
	5ºCo	1/2		2.19	3.37 x 10 ⁻⁵	0.8687	3.231
	1190-	1/2	0.42	100	0.28 £ 18 - 10-2	0.3015	23.014
	1330-	1/2	2.0 - 10=3	8.58	5.18 x 10 =	-10.0318	37.272
	1950.	1/2	-5.0 X 10 °	22.0	4.74 x 10 = 3	5.3339	13.117
	""Pt	1/2	-	33.8	9.94 x 10 ⁻³	5.8383	21.499

	NMR Se	ensitivity ir	NMR			U Iniversitat	de Barcelona
	The sensit Gyror Exter Natur	ivity of a nucle magnetic cons nal magnetic fi al abundance	us depends tant eld isotope to ol	of : d <i>M/dt</i> observe	∞γB₀M∞Nγ	/ ³) /(3k _B T)
-	Isoto	pe I	γ 7 rod Tel cel)	Abundancia N(%)	Resonance Fre	c. relative*	
R	1H 19F 31P	1/2 1/2 1/2 1/2	26.7519 25.1815 10.8394 6.7283	99.98 100 100	<u>B=2.54681</u> 100.0 94.077 40.481 25.144	1 0.83 6.63x10 ⁻² 1.56x10 ⁻²	
	2H 15N	1/2 1 1/2	4.1066 -2.7126	0.015 0.37	15.351 10.133	9.65x10 ⁻³ 1.04x10 ⁻³	
	γ ¹ H = 2	6,753 rad/G	Ratio	(γ ¹ H/ γ ¹³ C) ³ ≈	- 64		
	$\gamma^{13}C = 6,728 \text{ rad/G}$						
	If we consider the term A (Natural abundance) ${}^{1}H \approx 100\%$; ${}^{13}C \approx 1\%$						
	$\frac{1}{1}$ is 6400 times more sensible than 13C Nuclei with larger γ will absorb/emit more energy, and will therefore be more sensitive.						
- CH					Unitat c	le RMN Centres Científic	s i Tecnològics

	Time Do Fourier	B Universitat de Barcelona			
	the Fourie	er Transform		frequency domain sig	griais using
		$F(\omega) = \int_{-\infty}^{\infty} f(t)$)e⁻ ^{i∞t} dt	e ^{iωt} =cosωt+isen ωt	1
	Andrick Constant	()		I iki kun	
E).0 0.5	1.0 1.5 t1 (sec)	2.0	7 6 5 4 f1 (ppm)	3 2 1 0
	f(t)corresp frequency	onds to the tim domain	ne domain, and	$F(\omega)$ corresponds to	the
	<i>F(ω)</i> is a o	complex function	on that has a re	al (Re) and an imagir	nary part (Im)
	Re Im	Absortion Dispersion	A	В	c
			absorption signal	dispersion signal	absolute value signal $\sqrt{(Re)^2 + (Im)^2}$
	line shap	be is Lorentzian	(Fourier transforn		ntial function)
				onnai de Rinna Ce	naes cienanes i rechologics

Frequency Domain	Diversitat de Barcelona
time domain	
Mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	
NNNNN	
time frequency 0 Hz	
Unitat de RMN (Centres Científics i Tecnològics

